The swelling and shrinking of the piano's soundboard is the most immediate and noticeable effect of humidity change. The soundboard, a sheet of wood approximately 3/8” thick, is made with a slightly crowned shape. The strings pass over the soundboard and are connected to it by a wooden piece called a bridge. The upward crown of the soundboard presses the bridge tightly against the strings.
As the moisture level in the soundboard increases during periods of high relative humidity, the crown expands and pushes the bridge harder against the strings. The strings are stretched tighter and the piano's pitch rises. Because this increase in crown is greater in the center of the soundboard than at the edges, the pitch rises more in the middle octaves than in the bass or treble registers.
Relative humidity (RH) is the amount of moisture contained in the air, compared to the maximum amount of moisture that the air is capable of holding. During periods of low relative humidity the soundboard shrinks, reducing the crown and decreasing pressure against the strings. The pitch drops, again with the greatest effect noticeable in the center of the keyboard. When relative humidity returns to its previous level, the average pitch of all the strings will return to normal, although the exact pitch of individual strings will be slightly changed from their original settings. Thus, a piano only will stay in tune as long as the relative humidity level in the air surrounding the soundboard remains constant. Extreme humidity changes require making greater changes in string tension to bring the piano into tune. This upsets the equilibrium between the string tension and the piano frame, and the piano never becomes stable.
Get detail info: Grand Piano Repair
Also Visit: Piano Finish Repair
No comments:
Post a Comment